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Superscalar Design
� Four-Wide fetch/decode/issue

� Fetch/Predict/issue only 1 control 
instruction per cycle

� All Caches Fully Associative

� Exact LRU for each cache

� Out of Order Memory Queue

� Stores serialize, Loads OOE

� Register Renaming

� Speculation



Design Decisions

� Cost was never a consideration, 
performance was our only goal.

� Utilized cost-wise impractical 
methods to achieve maximum 
performance.

� Attempted to simplify some design 
areas due to the extreme 
complexity of our processor.

� Read architecture papers to learn 
about various designs.



Pipelines

� 2 ALU and 2 Memory pipelines

� Done to decrease amount of arbitration 
logic necessary to dispatch instructions.

� Each set of pipelines has its own set of 
reservation stations (16).

� The ALU pipleline is one stage shorter 
than the memory pipeline.



Caches

� All caches are fully associative

� Caches include:
� L1 Data Cache(512B)

� L1 I-Cache(4kB)

� L2 D-Cache(4kB)

� Speculative Cache(32B)

� BTB(128-entry cache)

� Arbiter controls DRAM access between L2 
D-Cache and L1-ICache

� All caches have exact LRU
� (Impractical amount of logic)



Memory Queue

� Loads between stores can be 
executed out of order.

� Speculative stores are sent down 
the pipeline twice.

� Special speculation mechanism.



Register Renaming

� 32 Physical Registers.

� Register Alias Table.

� Reference counts to determine free 
registers.



Speculation

� Superscalar without speculation 
impedes upon performance.

� Out of order commit, no reorder 
buffer!

� “Turn on a dime recovery” 

� Maximum of two speculative control 
instructions.

� Tournament Branch Predictor



Cost Analysis

� Impractical cost, hardware would be 
incredibly expensive.

� Checkpoint reference counts, RAT 
and control state (~.5kB of state) 
backed up.

� LRU and Fully Associative Caches 
would be very expensive. 



Performance Analysis

� Vector Adding
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Performance Analysis

� Handin Code
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Performance Analysis

� Branch Prediction

finalcode.asm
madd.asm
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Performance Analysis

� Overall Control Instruction Prediction
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Performance Analysis

finalcode.asm
madd.asm
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Performance Analysis
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Conclusion

� Completing a superscalar design in 
a semester is intense.

� ~1000 total hours

� Good group dynamics

� More work is needed to predict 
indirect branches.


