
AmdaZulo

By Steve Hanna

Tom Hughes

Mark Murphy

A Superscalar LC-3b Processor

AmdaZulo

Amdahl’s Law

+ Tomasulo’s algorithm

AmdaZulo

Superscalar Design
� Four-Wide fetch/decode/issue

� Fetch/Predict/issue only 1 control
instruction per cycle

� All Caches Fully Associative

� Exact LRU for each cache

� Out of Order Memory Queue

� Stores serialize, Loads OOE

� Register Renaming

� Speculation

Design Decisions

� Cost was never a consideration,
performance was our only goal.

� Utilized cost-wise impractical
methods to achieve maximum
performance.

� Attempted to simplify some design
areas due to the extreme
complexity of our processor.

� Read architecture papers to learn
about various designs.

Pipelines

� 2 ALU and 2 Memory pipelines

� Done to decrease amount of arbitration
logic necessary to dispatch instructions.

� Each set of pipelines has its own set of
reservation stations (16).

� The ALU pipleline is one stage shorter
than the memory pipeline.

Caches

� All caches are fully associative

� Caches include:
� L1 Data Cache(512B)

� L1 I-Cache(4kB)

� L2 D-Cache(4kB)

� Speculative Cache(32B)

� BTB(128-entry cache)

� Arbiter controls DRAM access between L2
D-Cache and L1-ICache

� All caches have exact LRU
� (Impractical amount of logic)

Memory Queue

� Loads between stores can be
executed out of order.

� Speculative stores are sent down
the pipeline twice.

� Special speculation mechanism.

Register Renaming

� 32 Physical Registers.

� Register Alias Table.

� Reference counts to determine free
registers.

Speculation

� Superscalar without speculation
impedes upon performance.

� Out of order commit, no reorder
buffer!

� “Turn on a dime recovery”

� Maximum of two speculative control
instructions.

� Tournament Branch Predictor

Cost Analysis

� Impractical cost, hardware would be
incredibly expensive.

� Checkpoint reference counts, RAT
and control state (~.5kB of state)
backed up.

� LRU and Fully Associative Caches
would be very expensive.

Performance Analysis

� Vector Adding

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 a

ll
co

m
m

its

Commits per cycle

Percentage of Multi−cycle Commits (madd.asm)

Performance Analysis

� Handin Code

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 a

ll
co

m
m

its

Commits per cycle

Percentage of Multi−cycle Commits (finalcode.asm)

Performance Analysis

� Branch Prediction

finalcode.asm
madd.asm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Correct Misprediction

F
re

qu
en

cy

Branch Prediction

Performance Analysis

� Overall Control Instruction Prediction

finalcode.asm
madd.asm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Correct Misprediction

F
re

qu
en

cy

Overall Control Instruction Prediction

Performance Analysis

finalcode.asm
madd.asm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

ctrlmemregrs

F
re

qu
en

cy

Structural Hazard Rates

Performance Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

finalcode.asm madd.asm mean

C
P

I

Test program

Cycles Per Instruction (CPI)

Conclusion

� Completing a superscalar design in
a semester is intense.

� ~1000 total hours

� Good group dynamics

� More work is needed to predict
indirect branches.

